

BRAZIL DATA CUBE brazildatacube.org

Part of the Environmental Monitoring of Brazilian Biomes project (2019 – 2023)

Karine R. Ferreira Gilberto R. de Queiroz

Earth Observation and Geoinformatics Division (DIOTG) National Institute for Space Research (INPE)

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

JNIÃO E RECONSTRUÇÃO

Big data of remote sensing images modeled as multidimensional data cubes

Land use and cover mapping

Big data technologies and machine learning

Image time series analysis

Technological innovation for the environmental monitoring projects of INPE

TerraClass Cerrado 2020 (December, 2022) - BDC

Mosaics – selection of the best pixels (free of clouds or cloud shadow) for periods.

Forest Monitor - DETER Intenso Service to visualize big Earth observation data on AWS

对 BRAZILDATACUBE.ORG

Image time series analysis and machine learning to produce land use and cover information from big Earth observation data

Image time series NDVI, EVI, NIR, MIR - agriculture year MODIS – MOD13Q1 Product / Method – SVM (Support Vector Machine)

Image time series analysis to extract vegetation phenological metrics.

A review of vegetation phenological metrics extraction using time-series, multispectral satellite data, Remote Sensing of Environment, 2020 (Zeng et al., 2020)

Table 4

Summary of main phenological metrics extraction methods for species-specific vegetation types from satellite imagery.

Methods	Vegetation types	Sensors	Stage classification	Specific Stages	Method Classification	Reference
Line segment fitted parameters and statistics	Quercus petraea, Fagus ylvatica L	AVHRR	Physiological-based phenological stages	Budburst, senescence	Empirical Statistics method	Duchemin et al. (1999)
Inflection points determined by derivative	Rice	MODIS	Physiological-based phenological stages	Planting, heading, and harvesting	Empirical method	Sakamoto et al. (2005)
Based on the parameters derived from the best fitted polynomial curve	Potato	MODIS	General phenological stages	12 metrics for potato	Empirical method	Islam and Bala (2008)
Use TIMESAT software to detect rice phenological stages	Rice	MODIS	General phenological stages	Start, peak and end of season	Empirical method	Boschetti et al. (2009)
Derive phenological dates based on the optimum scaling parameters and shape model.	Corn and soybeans	MODIS	Physiological-based phenological stages	8 stages for corn and soybeans respectively	Phenology matching	Sakamoto et al. (2010)
Regress the ground measure degree days and VI values	Sugarcane	ASTER	Physiological-based phenological stages	6 stages	Simulation	Mobasheri et al. (2010)

Image time series analysis to extract vegetation phenological metrics.

Figura 4. Métricas fenológicas de início, fim e máximo vigor vegetativo de plantio extraídas para soja (a), milho de primeira safra (b) e algodão (c) utilizando séries Sentinel-2A/B de NDVI a cada 16 dias.

Objectives

(1) Analysis-Ready Data (ARD) of medium-resolution satellite images for Brazil: CBERS-4 Landsat 8/9 Sentinel 2.

(2) Multidimensional data cubes.

CEOS Analysis Ready Data for Land: https://ceos.org/ard/index.html

Building data cubes

*bilinear resampling for better spatial resolution band

A BRAZILDATACUBE.ORG

For each *tile* and *time step*, there are a set of COG (Clould Optimized GeoTIFF) files:

(1) Spectral bands from original images;
(2) Vegetation indices (EVI and NDVI);
(3) Cloud mask; (4) number of valid observations (excluding cloud, cloud shadow..); (5) data provenace; ...

brazildatacube.dpi.inpe.br/portal/explore

BDC – Small Each tile: 105600m x 105600m

Sentinel-2/MSI – 10 meters Each file (band/tile): 400 MB Each tile: ~ 5.4 GB

SRAZILDATACUBE.ORG

Research and technological innovation

Partnership with international and similar initiatives

Yellow: operational

Objective

(3) Big data technologies, image time series analysis and machine learning methods .

(4) Land use and cover classification.

Source: [Ferreira et al, 2020]

SRAZILDATACUBE.ORG

Examples of NDVI time series

Time series extracted from Landsat8 data cubes

NDVI time series -September of 2019 to September of 2020

Pastagem

SITS (Satellite Image Time Series) R package

https://github.com/e-sensing

SITS (Satellite Image Time Series) R package

https://github.com/e-sensing

Land use and cover map for Mozambique - 2016

Land use and land cover maps

TerraClass Cerrado 2020 (Launched in December 2022)

Server-side processing infrastructure at INPE

IBGE

TerraClass Amazônia 2020

~ 33 Terabytes - Sentinel-2 data cubes (16-days) - 292 tiles ~ 25,000 samples - Randon Forest classifier

SITS (Satellite Image Time Series) R package:

https://github.com/e-sensing

ARD and Data cubes available at: http://brazildatacube.dpi.inpe.br/portal/explore

Land use and cover change maps:

http://brazildatacube.dpi.inpe.br/portal/explore

Source: [Ferreira et al., 2020]

🛹 BRAZILDATACUBE.ORG

Image time series

Web Time Series Service (WTSS)

I BRAZILDATACUBE.ORG

Web Land Trajectory Service (WLTS)

BDC Explorer 3.0

~

×

V

V

O ADDRESS

Last Date

2019/12/30

Notes SEARCH

Select Resources

12 Data Cubes

6 Classifications

ввох

Select the Period

Start Date

2017/01/01

West, South, East, North

Q SEARCH

4 Collections

3 Mosaics

Region

S 2 (No Kernel | Idle

Saving completed

Mode: Command 🛞

Big data

~ 2 Petabytes (PB)

Source: [Ferreira et al., 2022]

SRAZILDATACUBE.ORG

Amazon Web Services (AWS)

Data Cube Builder On AWS

Challenge – Samples

Methods to assess and improve the quality of land use and cover samples

Source: [Lorena Santos et al., 2021]

SRAZILDATACUBE.ORG

TerraCollect

web platform to collect and analyze land use and cover samples.

ps://brazildatacube.dpi.inpe.br/dev/terracollect/#clos

SRAZILDATACUBE.ORG

http://brazildatacube.org

Papers in journals and conferences:

2019: 9 2020: 14 2021: 12 2022: 10

https://doi.org/10.3390/rs12244033

MDPI

Article Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products

remote sensing

Karine R. Ferreira *⁽⁰⁾, Gilberto R. Queiroz ⁽⁶⁾, Lubia Vinhas ⁽⁰⁾, Rennan F. B. Marujo ⁽⁰⁾, Rolf E. O. Simoes ⁽⁶⁾, Michelle C. A. Picoli ⁽⁶⁾, Gilberto Camara ⁽⁸⁾, Ricardo Cartaxo, Vitor C. F. Gomes, Lorena A. Santos ⁽⁶⁾, Alber H. Sanchez ⁽⁶⁾, Jeferson S. Arcanjo, José Guilherme Fronza ⁽⁶⁾, Carlos Alberto Noronha, Raphael W. Costa, Matheus C. Zaglia, Fabiana Zioti ⁽⁶⁾, Thales S. Korting ⁽⁶⁾, Anderson R. Soares ⁽⁶⁾, Michel E. D. Chaves ⁽⁶⁾ and Leila M. G. Fonseca

https://github.com/brazil-data-cube

Software systems and services: 57

Software developers, Associate researchers, Master and PhD students.

INPE Researchers

Claudio

BRAZIL DATA CUBE brazildatacube.org

brazildatacube.org

brazildatacube.dpi.inpe.br/portal/explore

Karine R. Ferreira Gilberto R. Queiroz

brazildatacube@inpe.br

OBRIGADO!

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

@brazildatacube

